Lattice form adaptive infinite impulse response filtering algorithm for active noise control.

نویسندگان

  • Jing Lu
  • Chunhua Shen
  • Xiaojun Qiu
  • Boling Xu
چکیده

In some situations of active noise control, infinite impulse response (IIR) filters are more suitable than finite impulse response (FIR) filters owing to the poles in the transfer function. A number of algorithms have been derived for applying IIR filters in active noise control; however, most of them use the direct form IIR filter structure, which faces the difficulties of checking stability and relatively slow convergence speed for noise composed of narrow-band components with large power disparity. To overcome these difficulties along with using the direct form IIR filters, a new adaptive algorithm is proposed in this paper, which uses and updates the lattice form adaptive IIR filter in an active noise control system. Full mathematical derivations of the proposed algorithm are presented, and the comparison between the proposed algorithm and the commonly used filtered-u LMS and filtered-v LMS algorithms shows the superiority of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Convergence of Gradient Algorithms for Adaptive Iir Filters

The introduction of a simple correction term in gradient algorithms for adaptive IIR filtering is shown to improve their convergence and robustness. The error surface, i.e., the mean squared value of the output error as a function of adaptive coefficients, is quadratic in adaptive FIR filtering and thus a simple gradient search works well. This is not the case in adaptive IIR filtering where th...

متن کامل

Multichannel active control of random noise in a small reverberant room

Absfruct-In this study an algorithm for multichannel adaptive IIR filtering is presented and applied to the active control of broadband random noise in a small reverberant room. Assuming complete knowledge of the primary noise, the theoretically optimal reductions of acoustic energy are initially calculated by means of a frequency-domain modal model. These results are contrasted with results of...

متن کامل

An Estimation-Based Approach to the Design of Adaptive IIR Filters

We present an estimation-based approach to the design of adaptive IIR filters. We also use this approach to design adaptive filters when a feedback signal from the output of the adaptive filter contaminates the reference signal. We use an H, criterion to cast the problem as a nonlinear H, filtering problem, and present an approximate linear H, filtering solution. This linear filtering solution ...

متن کامل

A new adaptive recursive RLS-based fast-array IIR filter for active noise and vibration control systems

Infinite impulse response filters have not been used extensively in active noise and vibration control applications. The problems are mainly due to the multimodal error surface and instability of adaptive IIR filters used in such applications. Considering these, in this paper a new adaptive recursive RLS-based fast-array IIR filter for active noise and vibration control applications is proposed...

متن کامل

Improved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images

Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 113 1  شماره 

صفحات  -

تاریخ انتشار 2003